

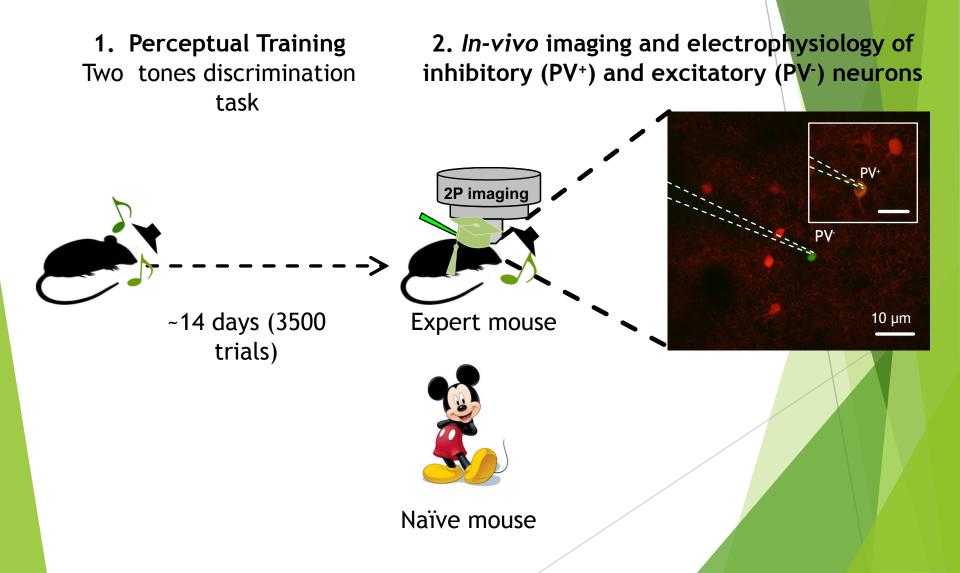
Analysis and theory of perceptual learning in auditory cortex

Ravid Shwartz - Ziv

Advisor: Haim Sompolinsky

Experiment: Ido Maor and Adi Mizrahi

Experimental design



The goals

- Building statistic modeling of neural coding in A1.
- Quantify the changes that accrued in the neural code due to perceptual learning.
- Learning model of perceptual learning with Fisher Information

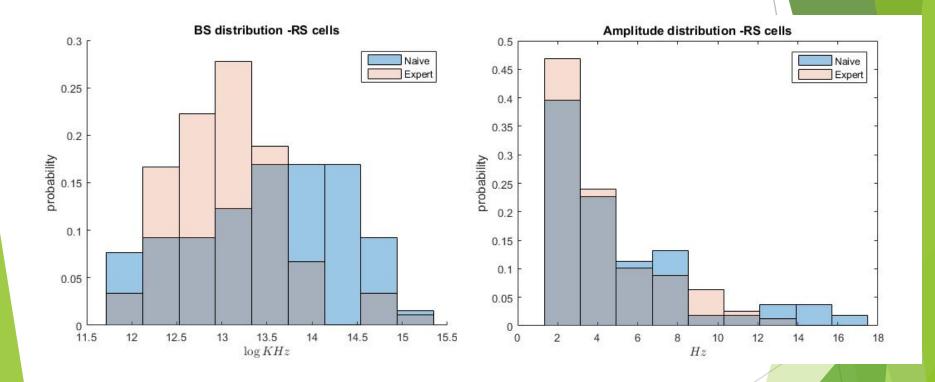
Statistical models - Gaussian

Fitting the Firing Rate of the cells with Gaussian

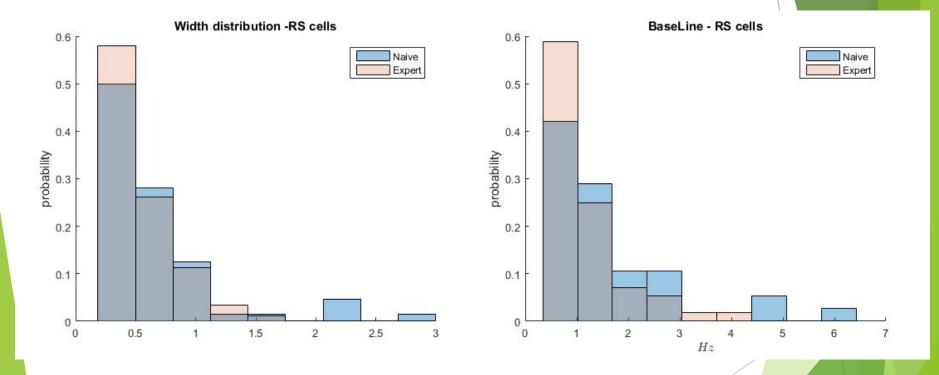
$$f(x) = a \exp\left(-\left(\frac{x-b}{c}\right)^2\right) + d$$

• Remove all the cells that don't fit $(R^2 \le 0.6)$

Parameters distribution

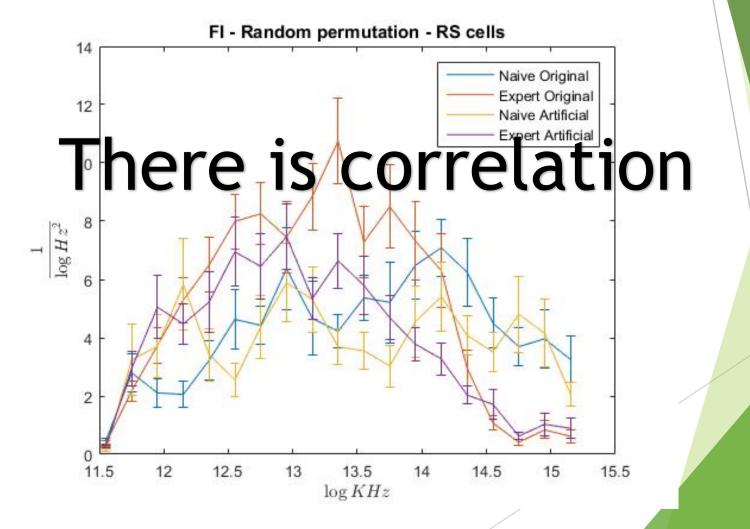


Parameters distribution



Is there correlation between the parameters?

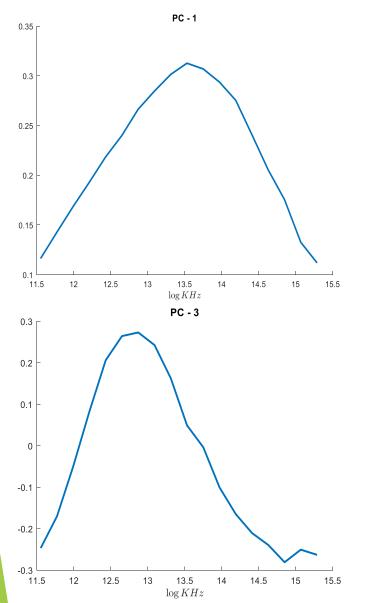
Sampling new cells from the Gaussian's parameters

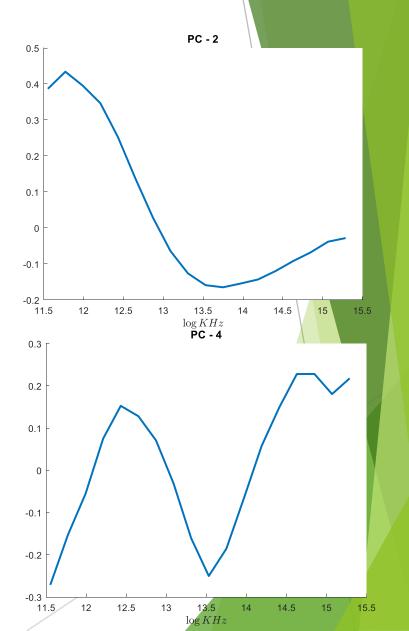


Principal component analysis (PCA) based model

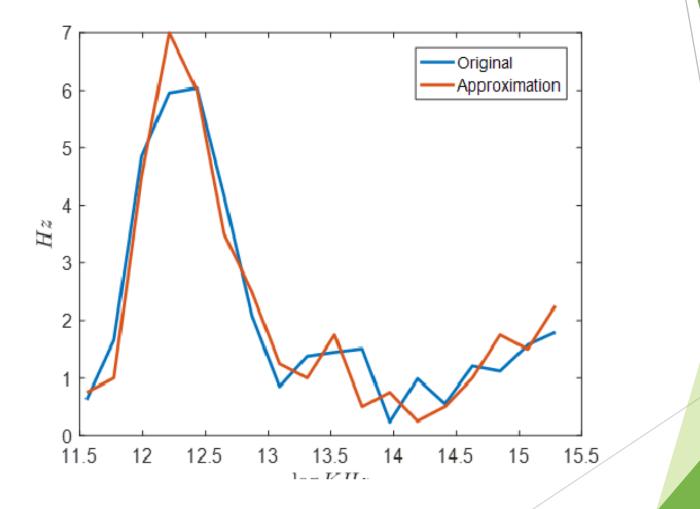
- PCA is a statistical method that does an orthogonal transformation.
- Convert a set of correlated variables into a set of linearly uncorrelated variables.
- ▶ The first PC has the largest possible variance.
- Each succeeding component has the highest variance under the constraint that it is orthogonal to the preceding components.

The shape of the PCs





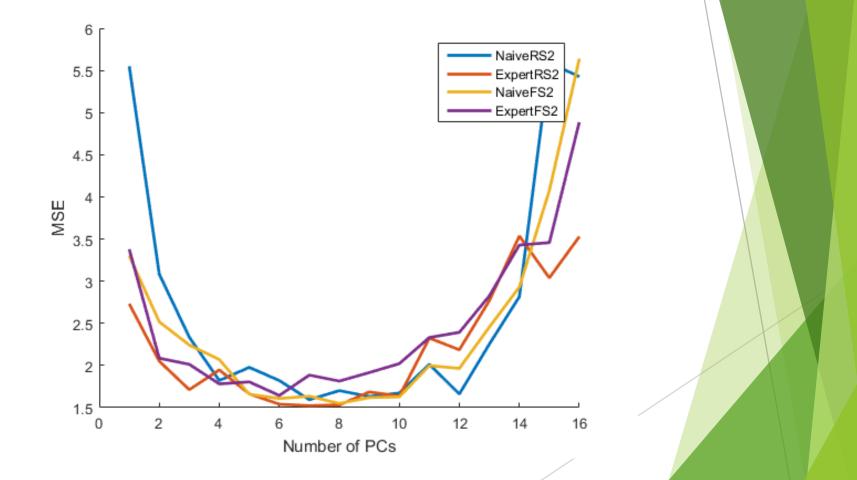
Reconstruction

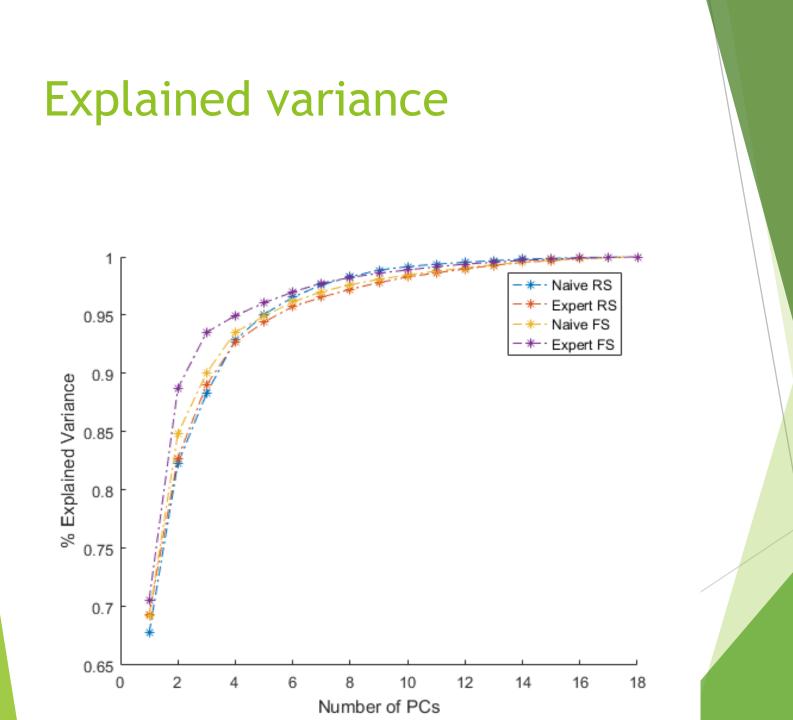


The optimal number of PCs

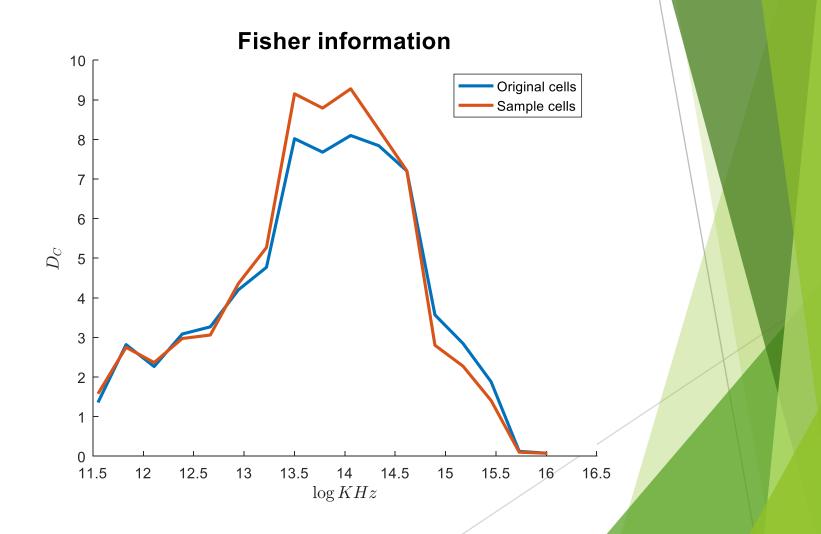
- How can we decide what is the optimal number of modes?
- High number of modes decrease the reconstruction error
- Low number of modes decrease the noise.
- Solution: Create the tuning curve based on part of the trails and check the MSE on the other part.

The optimal number of PCs





Sampling new cells



Summary

PCA based model success to describe the

Changes due to perceptual learning

Neuronal coding efficiency

Fisher Information

Chernoff Distance

Maximum likelihood discrimination with SVM

- Maximum likelihood estimation
- Optimal linear estimation
- Optimal linear discrimination

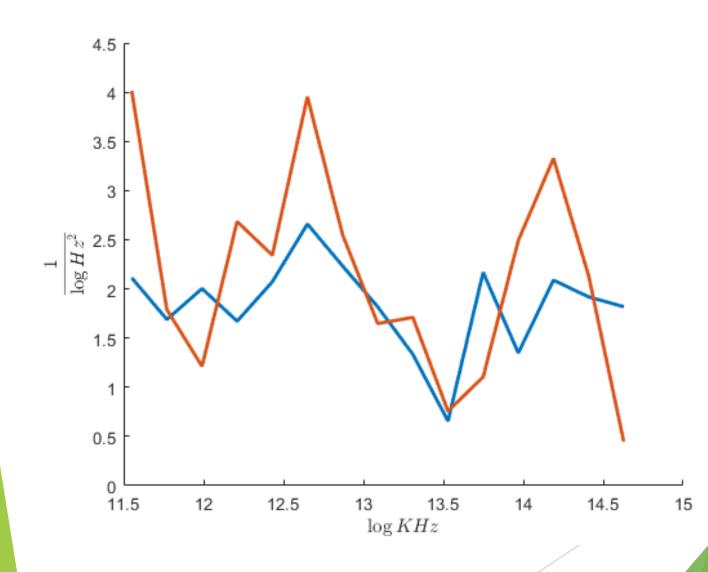
Fisher information

- Measure the amount of information that an observable random variable X carries about an unknown parameter θ.
- Gives the discrimination threshold that would be obtained by an optimal decoder.

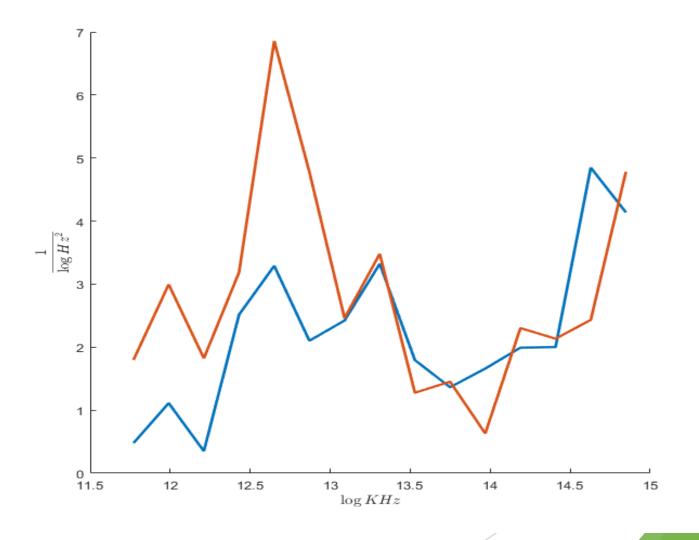
► JND = threshold(
$$\theta$$
) $\geq \frac{1}{\sqrt{J(\theta)}}$
 $J(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log p(n|\theta)\right)\right]$

$$(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial\theta}\log p(n|\theta)\right)^2 |\theta\right]$$
$$J_a(\theta) = \frac{f_a'(\theta)^2}{f_a(\theta)}$$

Fisher information- RS cells



Fisher information - FS cells



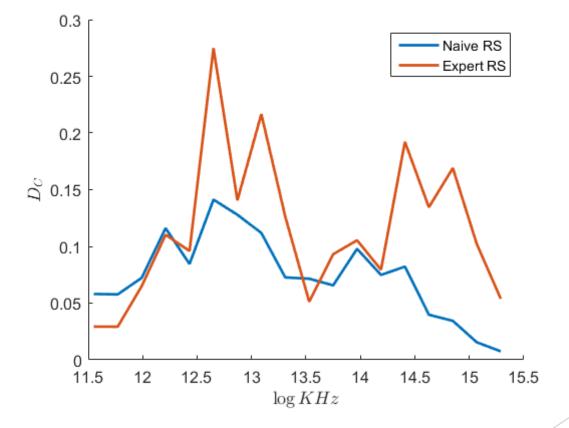
Chernoff distance

$$D_{\alpha}(f_1, f_2) = -\log Tr_{\vec{r}} P^{\alpha}(\vec{r}|f_1) P^{1-\alpha}(\vec{r}|f_2)$$

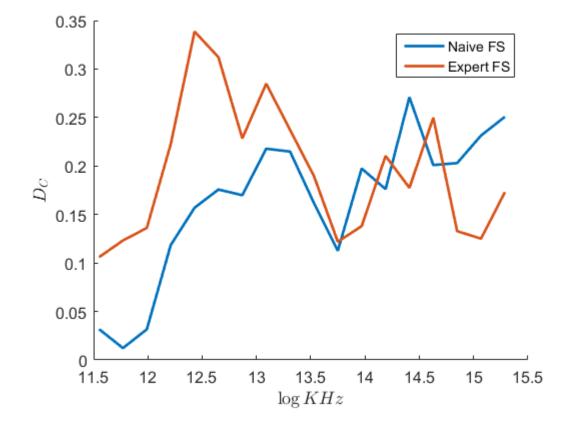
 $D_c(f_1, f_2) = \max_{\alpha} D_{\alpha}(f_1, f_2)$

- f_1 , f_2 are different frequencies and \vec{r} is a vector of spike counts for a population of neurons.
- $P(\vec{r}|f_i)$ is the distribution of activity across the population \vec{r} when the stimulus with the frequency f_i is presented.
- Relationships with Euclidean distance, error of maximumlikelihood discriminator, Fisher information and mutual information

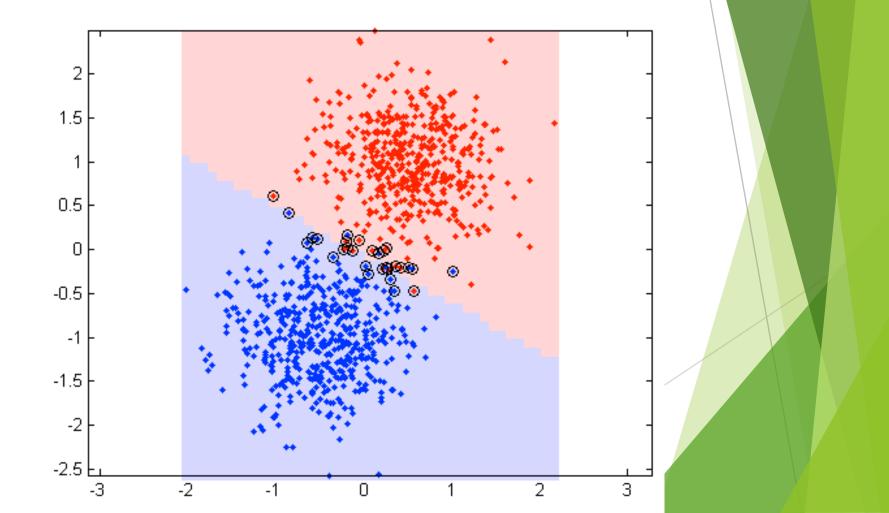
Chernoff distance - RS cells



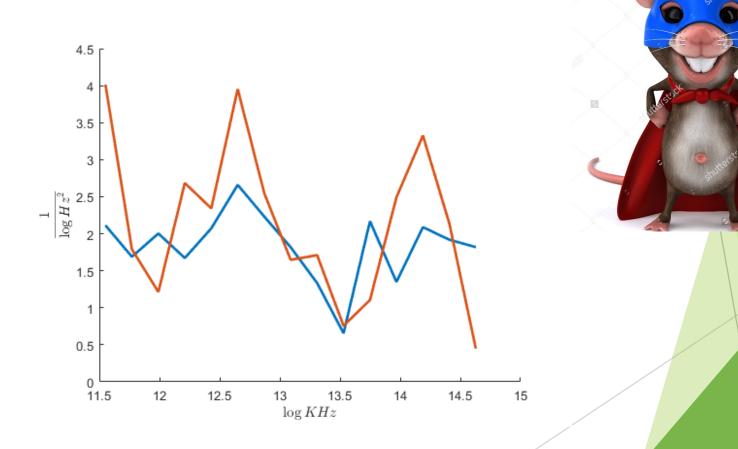
Chernoff distance - FS cells



Maximum likelihood discrimination with SVM

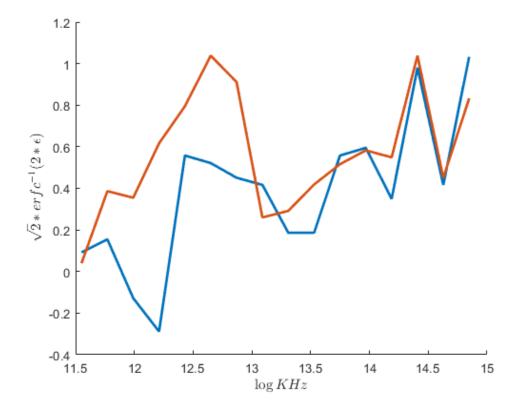


ML discrimination with SVM -RS cells



12

Linear estimation - FS



Estimation of the parameters

For a large population of neurons the probabilities of

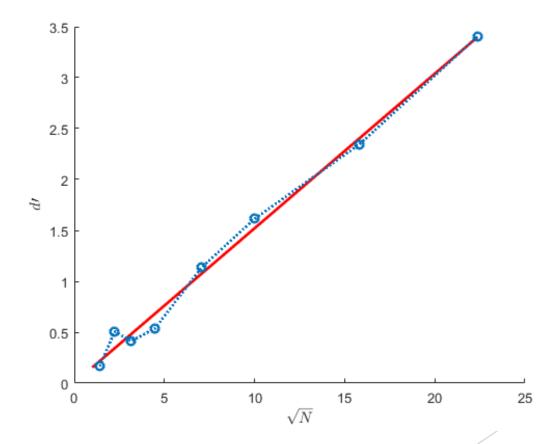
error for Maximum Likelihood discrimination is $H\left(\frac{d'}{2}\right)$

• Where
$$H(x) = (\sqrt{2\pi}) \int_{x}^{\infty} e^{-\frac{x^2}{3}}$$

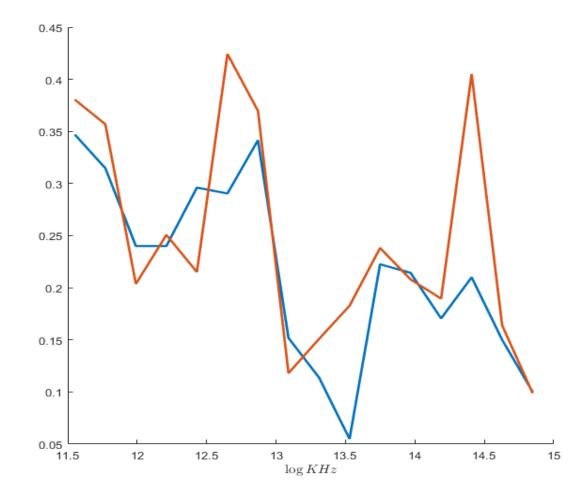
d' is the discriminability of the two stimuli -

 $d' = |\delta\theta| \sqrt{J[r](\theta)} \sqrt{N}$

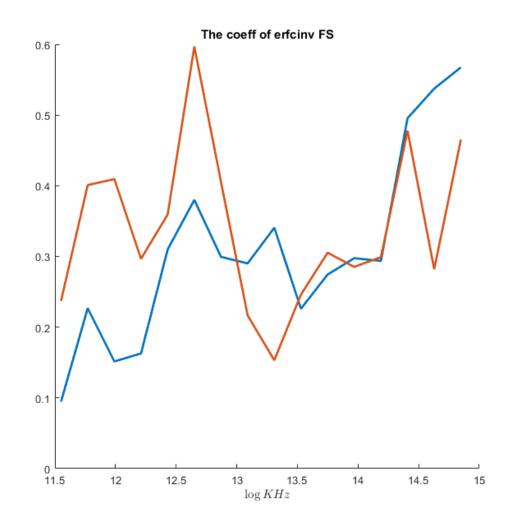
Estimate the parameters



Estimate the parameters - RS



Estimate the parameters - FS



Conclusions

Learning model of perceptual learning with Fisher Information

The model

- learning a discrimination task around the stimulus θ_{tr}
- training a readout from a population of tuned neurons

 $f_i(\theta_0) = h_i(\theta_0), i = 1, ...N$

$$h_i(\theta_0) = \sum_{j=1}^{N_0} W_{ij} h_j^0(\theta_0)$$

Assume the noise is Gaussian with stimulus independent σ

The goal

Optimize the fisher information in the training stimulus

$$\sigma^2 I(\Delta W | \theta_{tr}) = \sum_i \left(\partial_{\theta_{tr}} f_i \right)^2 = \sum_i \left(\sum_j (W_{ij} + \Delta W_{ij}) \partial_{\theta_{tr}} h_j^0 \right)^2$$

The cost function will

 $E(\Delta W) = -\sigma^2 I(\Delta W | \theta_{tr}) + \frac{1}{2} \lambda \Delta W^T \Delta W, \ \lambda > 0$

Deep Network

For each layer -

$$f_i^l(\theta_0) = f(h_i^l(\theta_0)), \ i = 1, \dots N - 1$$
$$h_i^l(\theta_0) = \sum_{j=1}^{N_0} W_{ij}^l f(h_j^{l-1}(\theta_0))$$

Deep Network - general case

$$\begin{split} \partial_{\Delta W_{ij}^{l}} E &= \sum_{i_{0}} \left(\partial_{\theta_{tr}} f_{i_{0}}^{L} \right) \partial_{\theta_{tr}} \left(\delta_{i,i_{0}}^{l} f_{j}^{l-1} \right) - \lambda \Delta W_{ij}^{l} \\ f_{i_{0}}^{L} &= g \left(\sum_{j} (W_{i_{0}j}^{L} + \Delta W_{i_{0}j}^{L}) f_{j}^{L-1} \right) \\ \delta_{i,i_{0}}^{l} &= \partial_{f_{i}^{l}} f_{i_{0}}^{L} g_{i}^{l} \\ \delta_{i,i_{0}}^{l} &= \sum_{k} g_{i}^{l} (W_{ki}^{l+1} + \Delta W_{ki}^{l+1}) \delta_{k,i_{0}}^{l+1} \\ \delta_{i,i_{0}}^{L} &= \delta_{i,i_{0}} g_{i}^{L} \\ g_{i}^{l} &= \partial_{h} f(h_{i}^{l}) \end{split}$$

Linear Deep Network

$$\partial_{\Delta W_{ij}^L} E = \left(\partial_{\theta_{tr}} h_i^L\right) \partial_{\theta_{tr}} \left(h_j^{L-1}\right) - \lambda \Delta W_{ij}^L = 0$$

$$h_i^L = \sum_j (W_{ij}^L + \Delta W_{ij}^L) h_j^{L-1}$$

 $\sum_{j'} (W_{ij'}^L + \Delta W_{ij'}^L) \partial_{\theta_{tr}} \left(h_{j'}^{L-1} \right) \partial_{\theta_{tr}} (h_j^{L-1}) = \lambda \Delta W_{ij}^L$

Linear Deep Network

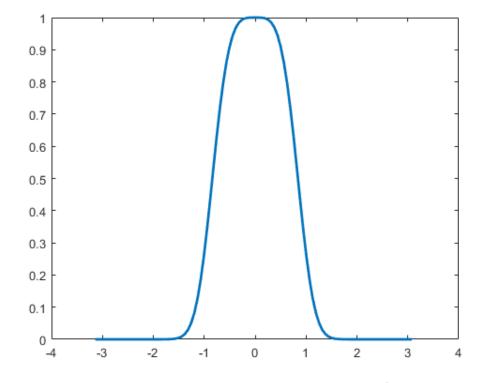
$$\Delta W^{L} = \tilde{W}^{L} H^{L-1} H^{(L-1)T}$$
$$\tilde{W}^{L} = (\lambda - ||H^{L-1}||^{2})^{-1} W^{L}$$

$$H_j^{L-1} = \partial_{\theta_{tr}} h_j^{L-1}$$

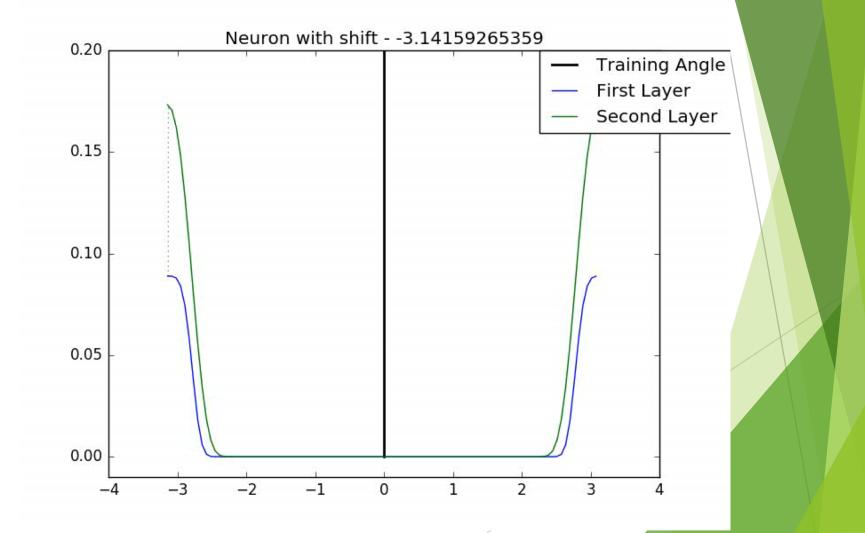
 $\lambda \Delta W_{ij}^l = S_i^l \partial_{\theta_r} h_j^{l-1}, l < L$

$$S_i^l = \sum_k (W_{ki}^{l+1} + \Delta W_{ki}^{l+1}) S_k^{l+1}$$
$$S_i^L = \partial_{\theta_r} h_i^L = H_i^L$$

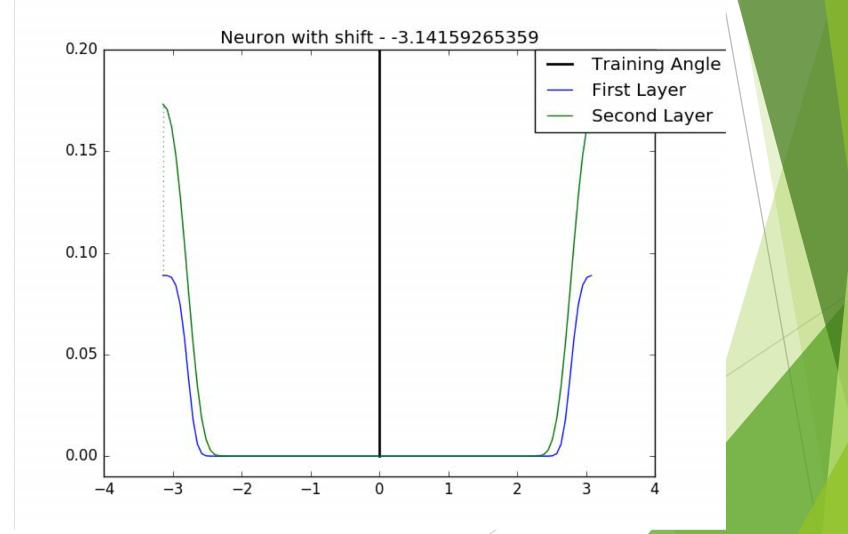
Simulations



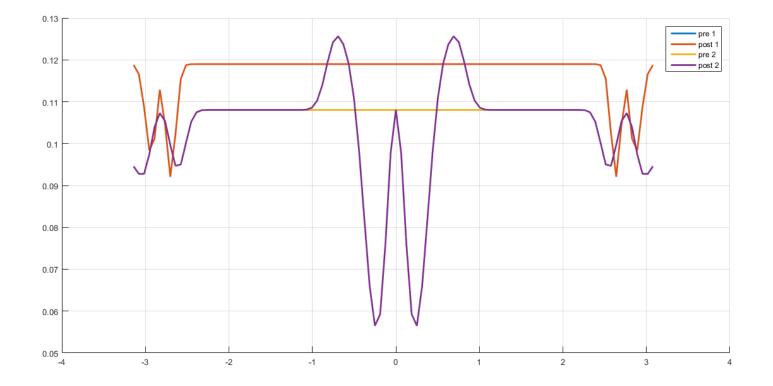
The changes due to the learning



The changes due to the learning



Fisher Information



Conclusions

Thanks

Prof. Adi Mizrahi

THANK YOU!

1

Ido Maor

Prof. Haim sompolinsky

Questions?

Thank you