OPENING THE BLACK BOX OF DEEP NEURAL NETWORKS

Ravid Swhartz-Ziv Advisor: Naftali Tishby The Edmond & Lily Safra Center for Brain Sciences Hebrew University, Jerusalem, Israel

We Need a Theory for Deep Learning...

- Why DNN's work so well?
- What is "an optimal DNN"?
- Design principles
 - What determines the number & width of the layers?
 - What determines the connectivity and inter-layer connections?
- Interpretability
 - What do the layers/neurons capture/represent?
- Better learning algorithms
 - Is stochastic gradient descent the best we can do?

Deep Neural Networks and Information Theory

Information Theory Basics

The KL-distribution divergence:

$$D_{KL}[p(x)||q(x)] = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} \ge 0$$

The Mutual Information:

$$I(X;Y) = D_{KL}[p(x,y)||p(x)p(y)] = H(X) - H(X|Y)$$

Data Processing Inequality (DPI):

For any Markov chain $X \to Y \to Z$ $I(X;Y) \ge I(X;Z)$

The Information Bottleneck Method

(Tishby, Pereira, Bialek, 1999)

We would like to find relevant partitioning T that compress X as much as possible, and to capture as much as possible information about Y

 $\min_{p(t|\mathbf{x})} I(T; X) - \beta I(T; Y), \beta > 0$

The Information Plane

12/17/17

DNN's and the Information Bottleneck

- Markov chain of intermediate representations.
- $I(X;Y) \ge I(h_j;Y) \ge I(h_{j+1};Y) \dots \ge I(\hat{Y};Y)$
- $H(X) \ge I(X; h_j) \ge I(X; h_{j+1}) \ge I(X; h_{j+1}) \dots$

DNN's and the Information Bottleneck

- For each layer there is an optimal point on the information plane.
- The goal of the network is to find the best trade-off between compression and prediction for each layer.

THE INFORMATION IN DNNS DURING THE TRAINING

- A Initial State:
 - The neurons in layer 1 encode everything about the input.
 - The neurons in the highest layers are in a nearly random state.

- B Fitting Phase:
 - The higher layers gain information about the input.
 - They are fitting to the labels.

- C Phase change:
 - The layers stop fitting.
 - They start to forget information about the input.

- D Compression phase:
 - The layers compress their representation.
 - They keep only the relevant information about the labels.

- E Final State
 - The layers converge to an optimal balance between accuracy and predication.

Different Amount of Training Data

The Layers' Gradients

- First phase large gradient means and small variance (*drift*, high SNR).
- Second phase large fluctuations and small means (*diffusion*, low SNR).
- The phase transition in the information accrues at the minimum of the derivative of the SNR of the gradients.

The Phase Transition

• The phase transition in the

information plane occurs at the same time as the transition in the gradients.

Different Problems and Architectures

The Benefit of the Hidden Layers

Two hidden layers One hidden layer Three hidden layers 0.7 More layers take much fewer • 0.6 0.5 training epochs. (, 0.4 (⊥) 0.3 0.2 0.1 The optimization time depend • 0.0└ 0 90 1 2 3 4 5 6 8 1 2 3 4 5 6 8 90 4 5 6 7 8 7 7 1 2 3 9 I(X;T) I(X;T) I(X;T) super-linearly on the Four hidden layers Five hidden layers Six hidden layers compressed information for 0.7 0.6 each layer. 0.5 (<u>≻</u> ^{0.4} (<u>⊥)</u> 0.3 0.2 0.1 0.0∟ 0 4 5 8 90 8 90 6 7 8 2 3 6 9 I(X;T)I(X;T)I(X;T)

The Optimality of the Network

- Layers of optimal DNN converge to the optimal IB limit information curve.
- The DNN encoder & decoder for each layer satisfy the IB selfconsistent equations.

STOCHASTIC RELAXATION AND REPRESENTATION COMPRESSION.

$$dw_k(t) = -\nabla L(w_k)dt + \sqrt{\beta_k^{-1}D_k(x)dW_k(t)}$$

- $D_k(x)$ is the variance of the error function
- $W_k(t)$ is a Brownian motion
- β_k is the noise level of the layer

The SGD Algorithm Converged to the IB Bound

SGD Converged to Gibbs distribution for each layer

• $p(W_k) \approx \exp(\beta_k L(W_k))$

It's the global minimizer of the free energy functional

$$F(p) = \mathbb{E}[L(W_k)] - \beta^{-1}H(p)$$

• Maximize the entropy under the constrain of the potential function.

The SGD Algorithm Converged to the IB Bound

- Max entropy over the weights $\rightarrow max H(X|T_k)$
- Since $I(X;T_k) = H(X) H(X|T_k)$
- The SGD brings $I(X; T_k)$ to minimum under the constrain of the error
- When the loss function is the D_{KL} ,

$$F(p) = -I(Y;T_k) + \beta_k^{-1}I(X;T_k)$$

-> SGD converges to the optimal IB bound

- How the DNN layers converge?
 - The ERM and Representation Compression phases
 - The Drift and Diffusion phases of the SGD optimization
- What is the benefit of the Hidden Layers?
 - Computational benefit boosting the compression
- Interpretability
 - Generally, only full layers can be interpreted
- Stochastic relaxation and representation compression
 - The SGD algorithm converges to the optimal IB bound

Questions?

