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We Need a Theory for Deep Learning...

Why DNN’s work so well?

What is “an optimal DNN”?

Design principles
= What determines the number & width of the layers?

= What determines the connectivity and inter-layer connections?

Interpretability

= What do the layers/neurons capture/represent?

Better learning algorithms

= |s stochastic gradient descent the best we can do?
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Deep Neural Networks and Information Theory

Encoder Decoder
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Information Theory Basics

= The KL-distribution divergence:

B p(x)
Dislp@lla()] = ) pllog o520

xeX

= The Mutual Information:

[(X;Y) = Dg[p (e, Ip()p ()] = HX) — H(X|Y)
= Data Processing Inequality (DPI):

For any Markov chain X =Y - Z
I(X;Y) =2 1(X;2)
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The Information Bottleneck Method

(Tishby, Pereira, Bialek, 1999)

= \WWe would like to find relevant partitioning T that compress X as much as possible,
and to capture as much as possible information about Y

Y X T

r?tlln I(T; X)) —pBI(T;Y),B >0
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The Information Plane
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DNN’s and the Information Bottleneck

e Markov chain of intermediate

_ Encoder Decoder
representatlons. P(T|X) P(Y|T)
-

>

« 1Y) =1(hi;Y) = 1(hjyy;Y) .. = IV Y)

« HX)=1(X;h) = 1(X;hiye) = 1(X; Riyq) .
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DNN’s and the Information Bottleneck
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THE INFORMATION IN DNNS
DURING THE TRAINING
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The Information during the Learning

* A—Initial State: 0.7
* The neuronsin layer 1 encode 0.6
everything about the input. o5l
* The neuronsin the highest layers
are in a nearly random state. ;
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The Information during the Learning

* B - Fitting Phase:

* The higher layers gain

information about the input.

e They are fitting to the labels.

I(T;Y)
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The Information during the Learning

e C —Phase change: 0.7

* The layers stop fitting. 0.6

* They start to forget information 0.5}

about the input. 0.4

I(T;Y)
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The Information during the Learning

* D —Compression phase:

* The layers compress their

representation.

* They keep only the relevant

I(T;Y)

information about the labels.
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The Information during the Learning

 E - Final State 0.7 Fro s IR e T
* The layers converge to an optimal o6}
balance between accuracy and 05|
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DNNis in the Information Plane
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Different Amount of Training Data
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The Layers’ Gradients

L] . 1 T =
* First phase - large gradient means and  *° g [Mean(V W) || STDIVT) [
A\ s E

small variance (drift, high SNR).

* Second phase - large fluctuations and

small means (diffusion, low SNR).

Normalized Mean and STD

.- . . . =107%
* The phase transition in the informatior
accrues at the minimum of the
. . . 10_3 7llIIIIIIIIIllIlIIlII 0'.::.:.:.:.:.:
derivative of the SNR of the gradients. e
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The Phase Transition

* The phase transition in the

information plane occurs at the same

time as the transition in the

gradients.
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MNIST with CNN Architecture
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I(T}Y)

Different Problems and Architectures
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The Benefit of the Hidden Layers

0.7

One hidden layer

Two hidden layers

‘ Three hidden layers

More layers take much fewer

training epochs.

The optimization time depend

0.0

0.6}

T ——

super-linearly on the
compressed information for

each layer.
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The Optimality of the Network
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* Layers of optimal DNN converge B=128 [=250
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curve.

e The DNN encoder & decoder for &
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STOCHASTIC RELAXATION AND

REPRESENTATION COMPRESSION.
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The SGD Algorithm Converged to the IB Bound

dwy (t) = —VL(wy)dt + \/.Bllek(x)de(t)

= D, (x) is the variance of the error function
= W (t) is a Brownian motion

= (3, is the noise level of the layer
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The SGD Algorithm Converged to the IB Bound

= SGD Converged to Gibbs distribution for each layer

= p(Wy) = exp(BrL(Wy))

= |t’s the global minimizer of the free energy functional

F(p) = E[LW;)] — B~ H(p)

= Maximize the entropy under the constrain of the potential function.
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The SGD Algorithm Converged to the IB Bound

Max entropy over the weights - max H(X|T})

Since I(X;Ty,) = H(X) — H(X|Ty)

The SGD brings I(X; T},) to minimum under the constrain of the error

When the loss function is the Dy,

F(p) = =1(Y;Ty) + Bic 1(X; Ty)
-> SGD converges to the optimal IB bound

12/17/17 FLAIR 2017 — Shwartz-Ziv & Tishby



Summary

= How the DNN layers converge?
= The ERM and Representation Compression phases
= The Drift and Diffusion phases of the SGD optimization
= What is the benefit of the Hidden Layers?
= Computational benefit — boosting the compression
" Interpretability
= Generally, only full layers can be interpreted
= Stochastic relaxation and representation compression

= The SGD algorithm converges to the optimal IB bound
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Questions’
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